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THE NATURE OF STATISTICS AND STATISTICAL METHODS 
Facts on individuals or a group or a unit can be referred to as statistics. Examples of such include: 
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i. the weight of all students in the College of Environmental Resources Management 
(COLERM), UNAAB could be from 65, 65.5, 60, 60.5, 55, 45, 75, 45.5, 70.5, to 70; 

ii. the number of loaves of UNAAB Bread produced every week could 1000, 950, 1200, 
3000 for the weeks in April (2011);  

iii. the complexion of teaching and non-teaching staff in the College of Agricultural 
Management and Rural Development (COLAMRUD), UNAAB could be light, dark and 
mulatto; 

iv. the degree of lesions caused by Cescospora spp. on maize leaves of 500level COLPLANT 
Students experimental plots in T&R Farm, UNAAB could be 15%, 25%, 30%, 10%, 5%; 

v. the demographic/socio-economic characteristics of cocoa farmers and cocoa farms in 
Cross River State of Nigeria:- 
Age – could be from 55, 35, 40, 70, 60, 80, 25 to 30; 
Gender – is male and female; 
Marital status – could be single, married, divorced or widowed; 
Education – could be primary school, secondary school, tertiary institution or adult 
education level; 
Off-farm occupation – could artisanship, trading, contract jobs or transport business; 
cocoa output – could be from 1, 3, 4, 5, 8, 6.5, 2.5, 7 to 10 tons; 
Severity of black pod disease – could be mild, moderate or severe. 

Statistics can be divided into two (2) as follows: 
1. Descriptive Statistics – deals with collection, summarization and description of statistical 

facts and figures (data). These include frequencies, percentages, measures of location and 
measures of dispersion. 

2. Inferential Statistics – deals with the process of using the information generated from 
observations and measurements to draw conclusions about the source of facts and figures 
(data). These include t-statistic, F-statistic, Pearson and Spearman correlation coefficient, 
regression coefficient and Least Significant Difference  

Statistical Terms and Notations 
Statistical Terms and Notations 
Observations: can be defined as the number with which an event is described or recorded. 
Observations are the raw materials with which statisticians work. To be useful in statistics, 
observations are recorded in numerals. 
Measurement: is the size or extent of the phenomenon of interest to a researcher (scientist). The 
scientist observes changes in the phenomenon of interest (dependent or response variable) as a 
result of changes in other phenomena (independent variables) influencing the phenomenon of 
interest.  
The four (mutually exclusive) levels of measurement are: 

i. Nominal  
ii. Ordinal 
iii. Interval 
iv. Ratio 

The quality of measurements is very important because policy instruments on agriculture are usually 
based on agricultural research findings. Hence, it is common practice to assess the quality of the 
instrument for gathering data by estimating the extent to which the measurements is accurate (i.e. 
validity) and the closeness of measurements to each other when repeated (i.e. reliability or 
reproducibility or precision). 
Variables: it is something or values that changes from individual to individual, group to group or 
units to units e.g. height varies from individual to individual.  
Data: are the information or facts or values collected on all items or characteristics of an individual 
or group of individuals for any purpose.  
Data can be of two (2) categories namely:- 

i. Qualitative Data – is obtained from item of information that has no notion of numerical 
magnitude. When a variable has two possible categories, it is called Binary Data or 
Variable (e.g. male or female).  
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ii. Quantitative Data – are measurements having numerical magnitude with the variables 
measured on, at least, the interval scale. They can be discrete or continuous variables. 
a. Discrete variables can take only finite number of values in a given finite interval e.g. 

bacteria count, anxiety scores, etc. 
b. Continuous variables can assume any value on the real line depending on the 

precision of the measuring instrument e.g. height, weight, etc. 
There are two sources of data namely:- 

a. Routine collections – these are data generated from established systems for continuous 
collection of data. Such systems include census, vital registration system, schools, industries 
and insurance. 

b. Ad-hoc collections – these are special collections usually occasioned by the inadequacy of 
statistics derived from data collected from routine source. Examples are social survey, 
epidemiological survey, demographic survey and agricultural survey (such as crop, livestock 
and village surveys). 

There are equally two types of data namely:- 
a. Primary data – these are data that are collected by the scientist directly either through 

survey or experimentation and that have not been analyzed or processed. 
b. Secondary data – are data that the scientist gather from publications (such as books, 

journals, reports, monograph and mimeograph) and have undergone some form of 
processing or the other. 

Population: a population or universe consist all possible values of a variable. The population can be 
discrete or continuous i.e. countable or uncountable values in a population respectively.  
Sampling: most experiment use only a sample or part of a population. For example, maize is planted 
on a plot of land since it cannot be planted on all the available land in the world. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 1: Population and Sample 
 
Distribution: is a set of possible values of a variable together with the number or proportion 
associated with each value e.g. asking poultry farmers about the level of poultry revenue (variable). 
Suppose there are g (revenue) groups, associated with revenue is a number of individuals having 
corresponding revenue level. The number of individuals is what is termed frequency (f), an 
illustration is given below. 
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Table 1: Frequency Distribution 
Revenue (NX) Frequency 
X1 F1 
X2 F2 
X3 F3 
X4 F4 
X5 F5 
  
Xg Fg 
The figures (Xi and Fi; i = 1, 2, …….., g) in Table 1 is called frequency distribution while the table (itself) 
is called frequency table. 
 
 
 
General Information 
The following algebraic notations are used as shorthand in statistics: 

i. Variables are denoted by algebraic letters like A, B, D, X, Y, Z. For example the variable 
age can be represented by the letter X. 

ii. Population values are indicated by capitals e.g. Xi is the value of the ith member of 
population X 

iii. Sample values are denoted by small e.g. xi is the value of the ith unit of the sample X. For 
example, if age is the variable of interest, xi is the age of the ith person in the sample. For 
instance, x3 is the age of the 3rd person in the sample. 

The summation of all values of a variable is denoted by the Greek letter. For example, to add all 
values of the variable xi i.e. x1 + X2 + x3 + ……. + xn, can be simply written as 
n 

xi ------------------------------------------------------------------- (1) 
i = 1 
 

Equation 1 implies summing the observations on variable x from the first to the nth.   
 

Methods of Data Collection and Presentation 
Data Presentation: is the process whereby data collected are processed, summarized and presented 
in a useful form. Perhaps, the most important of all data summarization technique is the histogram – 
a graphical representation of the frequency of a variable e.g. data on Table 1. 
Data Collection: there are four (4) basic methods of data collection. It could be:- 
1. by merely making observation e.g. the traffic count on a market day. 
2. By measuring and recording e.g. corn plants on the field or measuring rainfall with rain gauge. 
3. Use of existing records i.e. secondary data e.g. ADPs, Library, publications of institutions such     as 
Central Bank of Nigeria (CBN) and National Bureau of Statistics, annual    reports, etc. 
4. Using other people’s experimental results. 
Data Presentation: is the process whereby data collected are processed, summarized and presented 
in a useful form. These include  
i histogram – a graphical representation of the frequency of a variable. 
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ii. Frequency table. The table may include a table of frequency which shows at a glance a specific 
value and the number of times it occurs. For example: 
Table 2: Hypothetical Frequency Distribution 
Age Group Mid point Frequency 
20 - 25 22.5 57 
26 - 30 28.5 10 
31 - 35 33.5 19 
36 - 40 38.5 28 
41 - 45 42.5 36 
 
 
iii. Charts which can be  

a. circular chart (i.e. pie chart) 

    
                                                Figure 3: Circular Chart 
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c. Bar chart 

 
Figure 4: Bar Chart 
 
 
 
 
 
 
c. Lines  

 

 
Figure 5: Line Graph 
Relative frequency of a class is the frequency of a class divided by the total frequencies of the classes 
and is often expressed as a proportion. 
 
Table 3: Relative Frequency Table 
Variable (xi) Frequency (fi) Relative Frequency (pi) 
22.5 57 57/150 = 0.38 
28.5 10 0.06 
33.5 19 0.13 
38.5 28 0.19 
42.5 36 0.24 
Total 150 1.00 
 
Summarizing Data 
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Data can be summarized through the use of certain measures which can be broadly categorized into 
two (2) as follows: 
(1) Measures of location or central tendencies; 
(2) Measures of dispersion or spread. 
Measures of Central Tendency (Location): They serve to give an idea of a typical, the representative 
or ordinary value of a distribution. These are mode, median and mean. 
(A) Mean:  
a. Arithmetic mean – This is represented by two (2) symbols  (population mean) and  
x (sample mean).  
             N 

 = Xi(N)-1------------------------------------------------------------------- (2) 
             i = 1 

Where: 
N = population size; 
Xi = the variable (e.g. age, gender, etc) of interest of the ith member of the population; 
i = 1, 2, 3, ……………., N. 
 
 
           n 

x = xi(n)-1--------------------------------------------------------------------- (3) 
             i = 1 

Where: 
n = sample size; 
xi = the variable (e.g. age, gender, etc) of interest of the ith member of the sample; 
i = 1, 2, 3, ……………., n. 
b. Geometric mean: is represented by XG and is defined as the Nth root of the product of all the N 
observations i.e. XG = N(x1)(x2)(x3)...............(xn) ---------------------------- (4) 
e.g. N = 4, X1 = 5, X2 = 8, X3 = 10, X4 = 12 
XG = 4581012 = (4800)-4 = 8.32 

d. Harmonic Mean XH: This the reciprocal of the arithmetic mean, of the reciprocals of the 
observation.  
 

Example 
Given that x = (4, 5, 2, 10), find the harmonic mean of the distribution. 
Solution 
i. Reciprocals of observations = 1/4, 1/5, 1/2, 1/10 or 1/4, 1/5, 1/2, 1/10 
        4 
ii.  RO = 1.05/4 
iii. 1/ RO = 1/(1.05/4)   
  = 4/1.05   
 XH = 1/0.2625 or 10/2.625 
             n 

XH = n   (1/xi) ---------------------------------------------------------------------- (5) 
                      i=1 

This is used mostly by price analysts. 
d. Quadratic Mean XQ: It is the square root of the sum of the observation squared divide by the total 
number of observation. 
                          n                            n         

 XQ = {xi
2/n}1/2  {xi

2/n}1/2  --------------------------------------------------- (6)  
                             i=1                      i=1 

 
N.B:  n n 

xi
2  (xi)2 

 i=1 i=1 
n  

xi
2 = Sum of squares 

i=1 
  n  

(xi)2 = Squares of sum 
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   i=1 
 

Generally speaking: HM < GM < X 
B. Median: arrange all values either in ascending or descending order and pick the middle number 
when dealing with an odd number of values. When dealing with even number of values, the mean of 
the 2 middle numbers is the median. 
C. Mode: is the number that appears most frequently. This is taken from the frequency. 
 
2. Measures of Spread (Dispersion): The measure of central tendencies discussed above only give a 
partial summary of the information in a set of data. To complete the description of a distribution, 
information is needed on how far away the observations are from their central value. 
Illustrations: 
Assuming the age range of staff in COLAMRUD and COLPLANT is given by the frequency distribution 
in Table 4. The two Colleges are compared using the mean and graphical method. 
 
Table 4: Age Distribution of Staff in COLAMRUD and COLPLANT, UNAAB, Abeokuta 
Age Group Mid-point (Age) COLAMRUD (Frequency) COPLANT (Frequency) 
19 – 21 20 2 4 
22 – 24 23 4 3 
25 – 27 26 8 4 
28 – 30 29 16 26 
31 – 33 32 7 3 
34 – 36 35 4 3 
37 – 39 38 3 5 
 

Method 1: 
x = (fixi)[(fi)

-1]   
 
where:-  
 = sum of; 
fi = frequency; 

xi = mid-point values. 
Mean ages are 29.14 and 29.13 for COLAMRUD and COLPLANT staffs respectively. 
 
Method 2: 

 
 
From the above results, it can be seen that the mean age for staff in the two colleges is 
(approximately) 29 years. Meaning that the colleges are equal in terms of mean ages, however, 
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Figure 6 showed that the ages of staffers in COLPLANT are more concentrated around the central 
value (the mean) while that of COLAMRUD are not as concentrated. In other words, ages of staffers 
in COLAMRUD spread more widely than that of COLPLANT. Given these, it implies that more 
information is needed on the dispersion of data (ages) from the mean (age). 
There are five basic measures of dispersion namely:- 
A) Variance: It is the second moment about the mean and is a measure of spread. For a discrete 
population of N individuals, the variance is given by – 
              N         

2 = (xii – )2(N)-1  ------------------------------------------------------------------- (7)  
        i=1           
 
       
The sample variance is given by – 
                n         

Sx
2 = (xii – x )2(n – 1)-1  ----------------------------------------------------------------- (8)  

         i=1 
 

Where: x  = 1/nxii -------------------------------------------------------------------- (9)  
 
B) Standard Deviation: is the square root of the variance (definitional formula) 
i.e. SD = (Sx

2) 
½   Sx

2 = Sx
 

Note: Sx can never be negative. 
C) Variance of the mean: is given by  
                     N         

2/N = (xii – )2/{N(N – 1)}  ------------------------------------------------------- (10)  
             i=1                 
The sample variance is given by – 
                    n         

Sx
2/n = (xii – x )2{n(n – 1)}-1  ------------------------------------------------------- (11)  

             i=1 
 

D) Standard Error: the square root of the mean (definitional formula) i.e. 
SE =  Sx

2/n = Sx/n = Sx(n)-1 = Sx(n)-1/2 --------------------------------------- (12) 
 
F. Range: is the simplest measure of dispersion and it is simply the difference between the lowest 
value and the highest value of the observations  on the variable of interest. This could be given as: 
 
R = XU - XL --------------------------------------------------------------------------- (13) 
Where:- 
XU = highest value; 
XL = lowest value. 
For example, the range for the observations in c above can be   computed as: 10 – 2 = 8. 
  
ELEMENTARY PROBABILITY THEORY 
One of the important tools of statistics is probability. Although it is applied to a variety of practical 
situations. An understanding of the subject is made simpler if it is applied to practical situations like 
games of chance e.g. tossing of a coin which could result in either head or tail or rolling of an 
ordinary dice which could result in any of the six (6) sides i.e. 1, 2, 3, 4, 5 and 6. 
 
Trial: is a random experiment e.g. the rolling of the dice (or tossing of the coin). 
Exhaustive Events: is the group of all possible results of a random experiment that can occur apart 
from no other can be obtained e.g. the six (or two) possible results from rolling of a dice (or tossing 
of a coin).  
Mutually Exclusive Events: is a result of a random experiment that can only be obtained at a ith 
particular time.  
Equally Likely Event: All possible results of a trial having the same chances of occurrence.  
 
Definitions of Probability 
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Classical (a priori) definition: if a trial can result in any one of the exhaustive, mutually exclusive and 
equally likely outcomes and if m of these outcomes entails an occurrence of an event E thus the 
probability that E will happen as a result of that trial is given by:- 
 
P(E) =   m ≤ n   0≤ P(E) ≤ 1 ------------------------------------------------ (16) 

P(E) + P(E1) = 1 or P( E1)= 1-P(E) 
N.B:  
(i) P ≥ 0  
(ii) The sum of all probabilities in an experiment = 1 i.e. EP  P = 1  
(iii) 0 ≤ P (E) ≤ 1 
Statistical (empirical) definition: in this particular case probability is a ratio based on empirical 
information. It is viewed in actual fact as the result frequency of a particular event in a very long 
frequency of trials e.g. tossing a coin 100 times. If it is a fair coin, a tail has the same chance as a 
head. The resultant frequency become more consistent as number of trials increase. When number 
of trials is small there would more variation in the value of m/n = P but as n becomes large the 
observed value of m/n will closely converge around some central value. 
 
Probability and Probability Distribution 
Sets and Space: Set is an element of differentiated and well distinguished objects or members or 
elements. 
S1 = [1, 2, 3] is a well distinguished set 
S2 = [1, 2, 3, 2, 3] = S1 because S2 have three well distinguished elements 
The order of listing of elements in a set is not important. A set can be specified either by listing all its 
elements or by giving a rule which will enable the determination of whether any giving object does 
not belong to it.  
A null or an empty set is one with no number or element in it or simply – S = [ ] or S = Ø. 
A universal set is the underlined universe of discourse which serves as a frame of reference for any 
specification of a set.  
If every element in S1 is an element in S then S1 is a subset of S --------------------- 1;  
S1 S ----------------------------------------------------------------------------------------2. 
 
If S1 = {1} and S = {1, 2, 3}:- S1 obey rule 1, hence S1 is called a proper subset of S.  
If S contains at least an element not S1 it also obey rule S1S.  

 is also a proper subset of S, S. 

There are two important concepts in probability theory and these are: 
1. Union of 2 sets S = S1S2 – this is defined as the set of elements that belongs either to 

S1, S2 or both. e.g.:- 
S1 = {a, b, c, 2}S2 {1, 2, 3} = S. Since S = [a, b, c, 1, 2, 3] 

2. The set of elements it belong to both S2 and S2 e. g above example S1S2 = 2 
 

The Algebra of Sets 
The algebra of set sets is based upon a few postulates or laws and this include commutative and 
associative laws.  
Considering 3 sets S1, S2 and S3 as subsets of S: 
The commutative law states that S1 S2 = S2 S1 and S1 S2 = S2 S3; 

The associative law states that (S1 S2) S3 = S1 (S2 S3) and (S1 S2) S3 = S1 (S2 S3). 

Sample space: is a set whose set represents well distinguished outcome of an experiment.  
Sample space of the experiment of tossing a coin consists of 2 elements corresponding to {H, T} and 
tossing a die corresponds to {1, 2, 3, 4, 5, 6}. 
Discrete Sample Space: sample space consisting of finite or infinite but countable number of 
elements. 
Continuous Sample Space: the opposite of discrete sample space. 
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Basic Theorems of Probability Theory 
A, B, C, are events of a discrete sample space S, hence the respective probabilities are p(A), p(B), 
p(C): 
 0≤ p(A) ≤ 1 and p(S) = 1. 
Theorem 1 – If A| is an event not A, then p(A|) = 1 – p(A).  
Theorem 2 – p(A B) = p(A) + p(B) – p(A B). 

NB:- p(A B) implies probability of simultaneous occurrence. 

Theorem 3 – If A and B are mutually exclusive events, then p(A B) = p(A) + p(B);  

Also p(A B C D …… Z) = p(A) + p(B) + p(C) + p(D) + …… p(Z). 

Non-mutually Exclusive Events: For example, a graduate and the graduate’s gender.  
NB: - G means graduate and G| means non-graduate. 
 
Table 5: Sample Space for Gender and Educational Level 

Gender G| G Total 
M  M G| M G P(M) 

F  F G| F G P(F) 

Total  P(G|) P(G) 1 
 
The probabilities in the body of the table represent by intersections are called Joint Probabilities e.g. 
p(M G) and those that appear in the last row and column are called Marginal Probabilities e.g. 

p(G|) and p(M). p(G) is the probability of a graduate regardless of gender, p(F) is the probability of 
female regardless of level of education. 
p(M G) = p(M) + p(G) – p(M G). 

Table 6: Sample Space for Smoking of Habit and Gender Distribution 
Gender  S S| Total 
M  a b a + b 
F  c d c + d 
Total  a + b b + d N 

 
The sample space here contains {(MS), (fs), (ms|), (fS|)} i.e. 4 elements namely male smokers, female 
smokers, male non-smokers and female non-smoker.  
N = a + b + c + d.  
Addition theorem: p(M S) = p(M) + p(S) – p(M S) = 1- p(F S|) 

p(M S) = either male or smokers which are male smokers, male non-smokers and female smokers. 

p(M S) = male smoker. 

Conditional Probability 
Supposing the focus is to determine the probability that a person of a given gender is a smoker (non-
smoker) or that a chosen smoker is a male (female) such probability is called Conditional Probability 
written as p(S/M) or p(M/S) meaning probability of S given M or probability of M given S.  
In a finite population this probability is given by: 

 p(S/M) = Total number of male smokers 
                    Total number males 

p(S/M) = smokers (males) 
           Males 
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From Table 6:- 

p(S/F)   =  female smokers    =   

       females  
 

p(M/S) =          =    

p(M/S
|
) =          =     

p(S
|
/M)  =          =    

p(S
|
/F) =           =    

p(F/S) =           =    

p(F/S
|
) =              =   

NB: 
i) p(S/M) + p(S|/M) = 1  
ii) p(S/F) + p(S|/F) = 1  

iii) p(S/M) =   
p(M S)

 
   p(M) 

iv) p(S|/M) = p(S| M)    p(M)     

v) p(M/S) =  p(M S)       
  p(S)  

vi) p(M/S|) = p(M S1)    p(S|) 

Theorem 4: (Conditional Probability Theorem): if A and B are subset of a discrete sample space and 
p(B) ≠ O, then:- 
 

p(A/B) =   
p(A B) 

       p(B) 

N.B:- unlike p(A B) = p(B A) in all respect P(A/B) ≠ p(B/A) i.e. provide p(B) ≠ p(A). 

Since the CP theorem can always be written as p(A B) = p(A/B){p(B)} is called multiplication 

theorem. 
 
Further Principles Probability 
Tossing a coin a first time, the probability of a head is ½ and tossing the second time, what is the 
probability of having a head the second time having already gotten a head in the first toss? 

p(H2/H1) =     p(H2 H1) =  p(H1)p(H1) =    ½ . ½  = ½  
       p(H1)        p(H1)          ½  
If A is independent of B:  

p(A/B)  =   p(A)p(B)      = p(A) 
        p(B)   
i.e. if and only if A is independent of B i.e. the conditional p(A/B) is equal to the marginal probability 
of (A):  
p(A)  = p(A B)  or   p(B)   =    p(A B)  

     p(B)         p(A) 
  i.e. if A is independent of B then B is also independent of A. This leads to the 5th theorem called 
Independent Theorem.  
Theorem 5 (Independent Theorem): If the p(A)  0 and p(B)  0 then p(A B) = p(A)p(B) 

a + b 

a + b 
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 p(A B C D ……… Z) =   p(A)p(B)p(C)p(D)…………p(Z) 

 
 
NB: Independent events are not mutually exclusive and neither mutually exclusive events 
independent. 

1) If two events are mutually exclusive - p(A B) = 0  

2) If two events are mutually independent - p(A B) = p(A)p(B) 

3) If two events are mutually exclusive - p(A B) = (A) + (B) – 0  

4) If two events are mutually independent - p(A B) = p(A) + p(B) – p(A B) 

Mutually Exclusive: Occurrence of one event prevents the occurrence of the other.  
Independency: Occurrence of one event in no way affects the occurrence of the other.  
PROBABILITY DISTRIBUTION 
A probability distribution (PD) or probability function is the assemblage of values of xi with their 
associated probabilities e.g.: 
Table 7: Probability Distribution for Throwing of a Fair Dice  

xi 1 2 3 4 5 6 
P 

6
1

 
6
1

 
6
1

 
6
1

 
6
1

 
6
1

 

   
Table 8: Probability Distribution for Tossing of a Fair Coin  

xi H T 
P ½ ½ 

 

References about PD imply the mean and variance of the PD. 

The mean of a PD is called the expected value and (x) =  = xp i

n

l
i

1
.  

xi denotes a discrete random variable which can assume the value x1 to xn with respective 
probabilities p1 to pn  

Recall that  


n

l
ip

1
 = 1; hence 

(x) = p1x1 + p2x2+…….+ pnxn 

The variance of the PD is symbolically written as 2 = [x -(x)]2 

 

 

SOME COMMON DISTRIBUTION 
Binomial Distribution 
In this distribution the probability of occurrence of an event is the same or constant from trial to trial 
for every individual and there are only 2 outcomes which is a Yes or No to a question or to the 
presence or absence of a qualitative characteristic. The BD is determined by 2 parameters and these 
are n which is the sample size and p the probability of occurrence of the event. Symbolically, x: 
b(n,p) implies that x is binomially distributed i.e. the probability p of observing xi out of n trials.  
This probability is given by: 

P(x = xi) = 











 n

x1

 pxi (1 – p)n – xi  

The Mean and the Variance of Binomial Distribution     
The Binomial distribution is computable only if n and p are known. Hence, the BD is completely 
determined by two quantities p and n. p could be probability of success and n the number of trials.  
The mean [(x)] of a binomially distributed variable is defined as the average number of success that 
can be expected in a long sequence of repetitions of a binomial experiment.  
Recall that:    
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 (x) =  = xip(xi) 
Since the binomial distribution is determined by its parameters then:  
(x) =  = np 
By similar algebraic manipulation:  
The variance of BD (2) = npq where q = 1 – p 
  2 = np(1 – p) 

SD() = npq  

When n is large and p is small, the BD becomes cumbersome i.e. as n approaches infinity (n  ) 
and p approaches 0 (p  0), np is fixed and the BD approaches the limiting form i.e. 

P(x:) =  e- x  (x = 0, 1, 2) 
       x! 

e = 2.71828 
 x  =  number of successes;  
  = as a single parameters.  
This distribution is called Poison distribution. The binomial distribution cannot be used when 
(naturally) n > 100 and p < 0.05. 
 
PROBABILITY DISTRIBUTION OF CONTINUOUS RANDOM VARIABLES 
A random variable that can assume any value in an interval of values number matter how small the 
value is said to be continuous. Probabilities associated which CRV are measured for intervals of 
values of the variable and are given by areas under the probability curves of the variable. If a very 
large number of observations are made on a continuous random variable x and a relative frequency 
distribution with a large number of classes of uniform width is constructed, the resulting probability 
histogram approaches (pictorially) a smooth curve as the number of observations and classes 
increases. 
 
 
 
 
 
 

 
 
  
 
  
            
    
 
 
 
 
 Figure 7: Probability Histogram of CRV 
 
Each value of xx can be paired with only one value on the curve. The mathematical relationship 
defining what p(x) is for every value of x is denoted by fx. For any interval dx where x is very small, 
the probability which is equal to area of choosing point within that interval is f(x)dx i.e. height x 
width. The probability of obtaining a point or value within a large interval say b to a is given by:  

  
b

a

dxxf  

Probability function of CRV is called probability density function or probability density. An example 
of a continuous distribution is the normal distribution. 

f(x) 
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Normal Distribution  
Normal Distribution in many respects is the cornerstone of modern statistical theory. It is sometimes 
called Laplacian or Gaussian Distribution since it was first studied by Pierre Laplace (1949-1829) and 
Carl Gauss.  
 
Properties of Normal Distribution     
1. Discrete variable has become continuous and the frequencies have merged.  
2. The distribution is determined by 2 parameters i.e. the mean (meu)  and the standard      
deviation (SD) sigma (). The mean locates the centre of the distribution while the SD     measures 
the spread.  
3. It is symmetrical about the mean value i.e. ½ of the distribution or ½ of the total area under the     
curve lies on each side of the mean and the curve possesses a shape much like that of a bell.  
 

              
b

a

dxxf  

   
  
      
            x             x 
  
 
 
Figure 8: Properties of CRV  
 
4. The total area below the curve and above the x – axis is equal to one. 
Normal Curve: the mathematical formula is given as:- 

f(x) = 

2

2
1

2
1 e

x












 







 

This unlike the binomial case does not give probability directly but merely describe the curve. The 
magnitude of the area C between x1 and x2 in the diagram above gives the probability that a 
randomly drawn individual will lie between x1 and x2. In practice, instated of computing areas each 
time when probability is needed, a table is used to obtain probabilities. In computation, the variable 
x will be expressed in terms of a standard unit, therefore a standard normal variate represented by Z 
is needed to be defined and it is that variation that is normally distributed with a mean () = 0 and (a 
constant) variance (2) = 1. 
 

 Z: N (,  2) i.e. Z: N (0, 1). 
 
 
 

The formula given above now becomes:- 

FZ =  e z2
2

1

2
1 

 
 

Hence, Z = 

x

 

t – Distribution  
Usually called the student t, it was discovered by W. S. Gosset in 1908 and was perfected by R. A. 
Fisher in 1924. Recalling the fact that the normal distribution is determined by 2 parameters i.e. the 
mean and the variance which are estimated by the sample mean and the sample variance 
respectively. Obviously, if a statement is made about an observation x in X where X: N (, 2);  and 

 b  

C 
x1 x2 

f(x) 

a  b  

- 

-2 
 

f(x) 

 - 2 
a  

 
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2 have to be known, which involves the use of the population values N. Hence, since population 
figures are hard to come by, Z cannot be used. 
Since researchers often deals with small samples, t provides the tools for handling such samples and 

it makes use of x


 and S x
2

. 

 Z = 

x

 while t = 
S

x
x






 

Properties of t – Distribution  
1. It is symmetric about the mean but it is not normally distributed.  

2. It has different distribution for different sample sizes because of the S x


(SE) (standard error).  

Test of Hypothesis and Confidence Interval  
In using the t-distribution, the aim is to be able to say whether x is close enough to  for any 
difference to be due to chance. The assumption is usually stated in the form of a hypothesis. A test 
hypothesis is a procedure for deciding whether to accept or reject the hypothesis. In practice, there 
are 2 hypotheses – the null hypothesis (H0) and the alternative hypothesis (HA). 
The postulate is that the sample and population mean are not (significantly) different from each 
other. The null hypothesis is one for which it is possible to compute a t-statistic (called t-
calculated/computed) and the corresponding probability of a more extreme value taken from a table 
(called t-tabulated).  
The t-statistic can be computed with the expression stated below:- 

tc = 

n
s
x 

  

Furthermore, the hypothesis can be stated thus:- 
H0: x =  
Ha: x   
tc represents t calculated and tT represent tabulated or critical t. tT is usually expressed as tT,, (n – 1). H0 
is accepted if tc < tT at a given degree if freedom (n – 1) and level of significant (). 
The critical value of the t – distribution can also be used to calculate an appropriate confidence 
interval. If the hypothesized mean () lies outside the confidence interval (CI), H0 is not accepted and 
if it lies inside the CI, the H0 is accepted. 

n
x st xc  = x  ± tc( s x ) 

x - tc( s x )    x + tc( s x ) 

 
 
  
      
 
 
 
  
   
 Figure 9: Confidence Interval 
 
MEASURES OF ASSOCIATION 
Science, be it physical, biological or social is based or centred fundamentally on association or 
relationship which can be simple or complex. In many scientific areas of study, the researcher is 
often interested in watching or investigating how changes affects another e.g. effect of fertilizer on 
yield, effect of education on adoption and effect(s) of price or income on quantity demanded.  

t 2
  t 2

  
 

Acceptance region 
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The statistical techniques which are used in these studies or relationships vary depending on the 
type of association. The different types include correlation coefficient (), coefficient of 
determination (2), regression coefficient, chi-square (2) and Analysis of Variance (ANOVA). 
 
Correlation Coefficient  
A measure of association between 2 variables. It is represented thus: 

Definitional formula (x, y) = 
 

   yxVar
xyCov
var

 

 = 
    2/122 


yx

xy
   

 
Where: 

y = yi - y   

x = xi - x  

 =  xy – {[(x)(y)]  n}          
   










 








 


n
yy

n
xx

2
2

2
2

      

Covariance is a measure of joint variability while the correlation co-efficient measures the 
relationship between 2 variables.  
 
Properties of  (Rho) 
1. -1    1. 
2. It considers the 2 variables as co-equal 
3. Between 0 and +1 there is either direct, positive association, relationship or correlation. 
4. When the value is almost zero the relationship is weak or low.  
5. Between 0 to -1 there is indirect, inverse or negative association, relationship or correlation.  
6. When the value is almost -1 or +1, the relationship is said to be high or perfect e.g.: 
     if  = 0.90  perfect/close but direct relationship; 
     if  = -0.90  perfect/close but indirect relationship. 
N.B:  must not be more than 1. 
 
Coefficient of Determination 2 

If the correlation coefficient is squared, the coefficient of determination (CD) is obtained. CD 
indicates the amount of variation in one variable that is explained by the other variable as a result of 
their linear relationship. For example:-   
 

If  (xy) = 0.5 
2 = 0.25  25% 

This means that given x, 25% of the variation in Y can be explained as a result of the association 
between x and y. If x is price and y is quantity demanded of commodity and q(d) = f(P); then 25% 
means given price, 25% of the changes in quantity demanded due to relationship between price and 
quantity demanded can be explained. 
 
Regression Analysis  
Correlation coefficient measures the joint association between 2 variables while regression analysis 
estimates the amount of change that is expected in the dependent variable when the independent is 
altered i.e. in correlation the 2 variables are correlated but in regression one depends on the other.   
Regression analysis is particularly useful in:  

a) predicting the value of a dependent variable given the value of an independent variable; 
b) in measuring the degree of association between 2 variables;  
c) in testing of hypothesis which respect to the significant of the association.  
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Given the simple linear function (equation): 
Yi = a + bXi + ei  

Where (by convention):- 
Xi = independent (exogenous) variable; 
Yi = dependent (endogenous) variable;  
a = constant or Y – intercept i.e. the value of Y when x = 0;  
b = slope of the line or regression coefficient i.e. the amount by which Y changes when X  changes.  
ei = stochastic/random error term. 
Example: Suppose the cost of renting a tractor (in N‘000) is N25 and a charge of N0.3 for each km 
the tractor is driven. The data can be summarised as below. 
C = 25 + 0.3x    
Where: 
c = cost of renting the tractor; 
x = number of km. 
     
            

            

   

 
 
 
 
 
 
        
 
Figure 10: Regression Curve 
The Y intercept is 25 i.e. N25,000 is incurred irrespective of whether the tractor is used or not. The 
slope is 0.3 i.e. total costs for a day rent increase by N300 for each additional km the tractor is 
driven. 
 
Fitting a Straight Line by Least Square Method 
In scientific studies data are collected in pairs rather than generating data from a given 
mathematical equation. If the paired data are plotted, as shown below, the resulting pictorial 
representation is called scattered plot or scattered graph or scattered diagram. 
 
Table 11: X and Y Data Distribution 
Y X 
Y1 X1 
  
Yn Xn 
            
            
            
            
    
             
 
 
   Figure 11: Scattered Diagram  
The essence of the exercise above is to obtain a straight line that is called the best fit line or 
regression line. Statisticians define the best fit line to be the line for which the sum of the squares of 
errors has the smallest possible value. An error is the vertical distance between an actual point and 
the point directly below or above it on the estimating line. For a given set of observed data, different 

0.3 

X 

25 

C 

C = 25 + 0.3x 

X 

Y 

0 

* 
* 

* 
* 

* 

* 

* 

* 
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lines have different sum of squares of errors. The best fitting line out of the array of lines is the one 
having the smallest possible sum of square errors. The best fitting line is also called the least square 
line. 
The least square line can be determined by calculation performed on the XY data pairs. The 
calculation leads to a value for the slope b and for intercept a. After a and b have been computed, 
the values are substituted into the equation Y = a + bXi to obtain the estimating equation. The line 
and estimated equation are often called least square regression.  
By mathematical analysis it has been proofed that a and b for a least square regression line can be 
computed from the following formula: 
b = (XY)  [(X)2] 
 
Where:- 

y = yi - y   

x = xi - x  
 
b =  xiyi – [(xi)(yi) n  xi

2 – [(xi)2]  n    
 
 
a = (yi – bxi)  n 
Where: 
a = y intercept (constant); 
b = regression coefficient (slope); 
n = number of (paired) observations. 
Testing hypothesis about  (Population Slope or Regression Coefficient) 
 
 
Sb = Se        xii

2 – [(xii)2] n  
 

Where: 
 
Se =   yi

2 – ayi – bxiyi      (n – 2) = standard error of estimate; 
 

Sb = standard error of regression slope (b). 
tc = (b – ) Sb 

Ho:  = 0 
Ha:   0. 
Degree of freedom (v) = n – 2; 
Level of significance () = 1%, 5% or 10%. 
tT = t/2, v 
 tc    tT H0 not acceptable; otherwise Ha is acceptable. 
If H0 is accepted, then the conclusion is that there is no true relationship between X and Y or b is not 
statistically significant at an -level (e.g. 5%) and when H0 is not accepted, then the conclusion is that 
there is true relationship between X and Y or b is statistically significant at an -level (e.g. 5%). 
 
Interval Estimate 
Confidence interval for  
b  tTSb 
 b – t/2, vSb    b + t/2, vSb ; 100(1 – )% 
To test for:- 
Ho:  = 0.5 
Ha:   0.5. 
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    Critical region 
                      
 Figure 12: Critical/Acceptance Region  
 
Chi-Square 
Frequently, data of interest consist of counts rather than measurement e.g. in the study of consumer 
preference (CP) for a product in various geographical regions. The CP might consist of “like”, “dislike” 
or “no opinion” and the geographical category might consist of “East”, “Central” or “West”. The 
sample gathered might be summarized as counts such as given below. 
 
Table 12: Customers Quality Rating of Product P by Geographical Region  

Quality Rating East Central West Total 
Like a b c a+b+c 
Dislike d e f d+e+f 
No opinion g h i g+h+i 
Total a+d+g b+e+h c+f+i 1 

 
The type of table above is usually called a Contingency Table (CT). A CT consists of count data 
obtained from a simple random sample arranged in rows and columns. An r X c CT has r rows and c 
columns. The actual sample counts are called observed frequency and are usually denoted by fo.   
 
Chi-square Test for Independence 
Against fo, the expected frequency (denoted by fe) can be computed as follows: 
fe = (RTCT)(GT)-1 
Where:- 
fe = expected frequency; 
RT = row total; 
CT =column total; 
GT = grand total. 
The expected (fe) and observed (fo) frequencies are used to compute a sample statistic for testing the 
hypothesis that row and column categories are independent. The statistic that is used for the test is 
called the sample Chi-square and is computed as follows: 
c

2 = {(fo – fe)
2}{(fe)

-1} 
Where:- 
c

2 = Chi-square computed/calculated; 
 = sum of; 
fo = observed frequency; 
fe = as defined previously. 
The hypothesis is as stated below: 
Ho: the row and column are independent 
Ha: the row and column are dependent 
Decision rule:- 
Ho is not acceptable if sample c

2 > 2
, r  

Where: 
 = level of significance; 
r = degree of freedom and r = (r – 1)(c – 1).   
At times 2 can be used to test the goodness-of-fit i.e. test of assumption made about a population. 

Acceptance region 
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Analysis of Variance (ANOVA) 
ANOVA is used to test for equality of several population (/sample) means. The ANOVA test is 
performed on simple random sample drawn independently. The test assumes that the population 
are normally distributed with the same variance but with mean which may differ. The pertinent data 
for performing the test are summarized in a table known as ANOVA table. ANOVA could be a one-
way classification (in which only one factor is considered to be affecting the variable of interest) or a 
two-way classification (in which two factors are considered to be affecting the variable of interest). 
Steps in ANOVA 
1. Setting up a hypothesis i.e. H0 (null) and Ha (alternative) hypothesis. 
2. Deciding on the level of significance (if not given). 
3. Computing F-statistic (i.e. F calculated). 
4. Finding the tabulated F-statistic on the F table (i.e. F tabulated). 
5 Comparing FT with the Fc. 

6. Drawing conclusion i.e. accepting H0 if Fc < FT and accepting Ha if otherwise. 
 

One-way ANOVA 
Assuming a green house experiment is conducted to determine the yield of potato with the 
application of four (4) different types of nitrogen fertilizer using three (3) pots per treatment. 
Suppose the information collected is as shown below. 
 
Table 13: Yield Response of Potato to Nitrogen Fertilizer  

Treatment Yield of 
1 

Potato (Kg/N2 

2 
ration) 
3 

 
Total 

1 a b c a+b+c 
2 d e f d+e+f 
3 g h i g+h+i 
4 j k l j+k+l 
Total a+d+g+j b+e+h+k c+f+i+l a+b+…+l 

 
N.B:- Row total = column total. 
Basically, the task is to test the significance of (Nitrogen fertilizer) treatment on yield. The following 
questions are to be answered: 

i. are the differences in yield negligible; 
ii. are the differences in yield attributable to chance or fluctuations; 
iii. Are the differences in yield large enough to indicate differences in the treatment. 
iv.  

ANOVA (Mean Additive) Model 
Yi =  + Ti + i  

where:- 
Yi = yield; 
 = population/sample mean; 
Ti = treatment effect; 
i  = random effect which is due to nature. 
Treatment effect can be considered as the true deviation of the mean of the ith group from . It is 
assumed for all the groups involved in the experiment that Ti (treatment effect) is fixed. 
Assumptions: 
Ti = 0; 
i (0, 1) i.e. the error is normally and independently distributed with mean zero and constant 
variance. 
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Table 14: One-way ANOVA Table  
Source of Variation Degree of Freedom Sum of Squares Mean Sum of Squares F 
Total n – 1  Yi

2 – CT - - 
Treatment t – 1  {(Yi)

2/r} – CT  SSt /(t – 1) MSSt /MSSr 
Residual n – t  SSt – SSr SSr /(n – 1) - 

 
Where: 
CT = correction term = (Yi)

2/n or Y..2/n (Y.. = grand total) 
n = total number of observations; 
t = number of treatment; 
r = number of observations per treatment; 
Yi = row total; 
SSt = sum of squares total; 
SSr = sum of squares residual; 
MSSt = mean sum of squares treatment; 
MSSr  = mean sum of squares residual. 
H0: 1 = 2 = 3 = 4 
Ha: i  j; i  j. 
 
Two-way ANOVA 
Basically, the assumptions and steps for one-way also hold for two-way. However, two-way analysis 
is very useful where variations in observed data exist due to blocking or grouping effect. The two-
way classification increase the precision of the conclusion of an experiment since variations excluded 
in the one-way analysis is included in the two-way.  
Given the previous example on potato, assuming that the potatoes are grouped into their varieties, 
the computation for two-way analysis is as follows: 
Yi =  + Ti + i + i  

where:- 
Yi, , Ti and i are as previously defined;  
i  = blocking effect. 
 
 

Table 15: Two-way Table  
Source of Variation Degree of Freedom Sum of Squares Mean Sum of Squares F 
Total n – 1  Yi

2 – CT - - 
Treatment t – 1  {(Yi)

2/t} – CT  SSt /(t – 1) MSSt /MSSr 
Block b – 1  {(Yj)

2/b} – CT  SSb /(b – 1) MSSb /MSSr 
Residual (t –  1)(b – 1) SSt – SSr – SSb SSr /(t – 1)(b – 1) - 

 
Where: 
CT, n, t, SSt , SSr, MSSt, MSSr are as defined previously; 
Yj

2 = column total; 
b = number of blocks; 
SSb = sum of squares block; 
MSSb = mean sum of squares block. 
H0: T1 = T2 = T3 = T4; 
HA: Ti  Tj; i  j. 
H0: 1 = 2 = 3 = 4; 
Ha: i  j; i  j. 
 

 


